Joint effects of self-fertilization and population structure on mutation load, inbreeding depression and heterosis.
نویسندگان
چکیده
Both the spatial distribution of organisms and their mode of reproduction have important effects on the change in allele frequencies within populations. In this article, we study the combined effect of population structure and the rate of partial selfing of organisms on the efficiency of selection against recurrent deleterious mutations. Assuming an island model of population structure and weak selection, we express the mutation load, the within- and between-deme inbreeding depression, and heterosis as functions of the frequency of deleterious mutants in the metapopulation; we then use a diffusion model to calculate an expression for the equilibrium probability distribution of this frequency of deleterious mutants. This allows us to derive approximations for the average mutant frequency, mutation load, inbreeding depression, and heterosis, the simplest ones being Equations 35-39 in the text. We find that population structure can help to purge recessive deleterious mutations and reduce the load for some parameter values (in particular when the dominance coefficient of these mutations is <0.2-0.3), but that this effect is reversed when the selfing rate is above a given value. Conversely, within-deme inbreeding depression always decreases, while heterosis always increases, with the degree of population subdivision, for all selfing rates.
منابع مشابه
Effects of Interference Between Selected Loci on the Mutation Load, Inbreeding Depression, and Heterosis.
A classical prediction from single-locus models is that inbreeding increases the efficiency of selection against partially recessive deleterious alleles (purging), thereby decreasing the mutation load and level of inbreeding depression. However, previous multilocus simulation studies found that increasing the rate of self-fertilization of individuals may not lead to purging and argued that sele...
متن کاملInbreeding depression is high in a self‐incompatible perennial herb population but absent in a self‐compatible population showing mixed mating
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self-incompatibility (SI) and outcrossing toward self-compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self-fertilization. In contrast, populations that show interm...
متن کاملMating system plasticity promotes persistence and adaptation of colonizing populations of hermaphroditic angiosperms.
Persistence and adaptation in novel environments are limited by small population size, strong selection, and maladaptive gene flow. Mating system plasticity is common in angiosperms and may provide both demographic and genetic benefits that promote niche evolution, including reproductive assurance and isolation from maladaptive gene flow. Yet increased self-fertilization may also cause inbreedi...
متن کاملPatterns of inbreeding depression and architecture of the load in subdivided populations.
Inbreeding depression is a general phenomenon that is due mainly to recessive deleterious mutations, the so-called mutation load. It has been much studied theoretically. However, until very recently, population structure has not been taken into account, even though it can be an important factor in the evolution of populations. Population subdivision modifies the dynamics of deleterious mutation...
متن کاملAn Analysis of Heterosis vs. Inbreeding Effects Medicago Satna L. with an Autotetraploid Cross-fertilized Plant:
Self-fertilization and crossing were combined to produce a large number of levels of inbreeding and of degrees of kinship. The inbreeding effect increases with the complexity of the character and with its supposed relationship with fitness. A certain amount of heterozygosity appears to be necessary for the expression of variability. With crossing of unrelated noninbred plants, genetic variance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 167 2 شماره
صفحات -
تاریخ انتشار 2004